之前的一篇文章介绍了使用Matplotlib实现各种统计图表,Python数据可视化之Matplotlib实现各种图表。这篇文章就介绍使用pyecharts实现各种统计图表。

1、pyecharts介绍

Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表。

2、柱状图

适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。 
优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感。 
缺点: 只适用中小规模的数据集。

柱状图最基本用法

from pyecharts import Bar

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
sales = [18888,20023,30989,8873,29876,5409]
bar = Bar('水果销售情况')
bar.add('',fruits,sales,is_stack=True)
(bar.render())

add()方法用于添加数据。

当要比较不同商家水果销量情况,只需多次调用add()方法:

from pyecharts import Bar

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=False)

shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=False)
bar.render()

如果想在数据叠加显示,只需将is_stack参数设置为True

from pyecharts import Bar

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
bar = Bar('水果销售情况')
bar.add('商家A',fruits,shop1_sales,is_stack=True)

shop2_sales = [4888,7023,3989,5873,8876,6409]
bar.add('商家B',fruits,shop2_sales,is_stack=True)
bar.render()


下面是柱状图中常用方法和属性介绍: 
(1)add()方法中根据is_stack可以设定柱形图是否叠加显示 
(2)is_more_utils=True 参数来设置最右侧工具栏,对生成的图进行更多的操作,如将柱形图更改为折线图等 
(3)标记的使用:mark_point=[‘average’]标记点,平均值;mark_line=[‘min’,’max’,’average’]标记线,最大值、最小值和平均值 
(4)横向柱形图:is_convert=True,标识交换X轴和Y轴

3、折线图

常用折线图来描绘统计事项总体指标的动态、研究对象间的依存关系以及总体中各部分的分配情况等。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'])
line.show_config()
line.render()

line()方法中有个is_smooth的参数,将参数的值设置为True,折线图的线条会以圆滑的趋势变化,不像上图那样以直线的方式变化。

# 普通折线图
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家A', fruits, shop1_sales, mark_point=['max'])
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_smooth=True)
line.show_config()
line.render()


上图的商家A设置了is_smooth参数的值为True,商家B没有设置is_smooth属性。可以看到商家B的折线是以圆滑的趋势变化的。

最常用的还有阶梯折线图和面积折线图。

阶梯折线图 
将line()方法的is_step参数设置为True。

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]

line = Line('折线图')
line.add('商家B', fruits, shop2_sales, mark_point=['min'], is_step=True)
line.show_config()
line.render()

面积折线图

fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop2_sales = [4888,7023,3989,5873,8876,6409]
shop1_sales = [8888,3323,6989,8873,3876,15409]
line3 =Line("面积折线图")
line3.add("商家A", fruits, shop1_sales, is_fill=True, line_opacity=0.2,   area_opacity=0.4, symbol=None, mark_point=['max'])
line3.add("商家B", fruits, shop2_sales, is_fill=True, area_color='#a3aed5', area_opacity=0.3, is_smooth=True)
line3.show_config()
line3.render()

柱状图-折线图 
在柱状图上显示折线图也是常用的统计图表。需要借助Overlap类实现。

from pyecharts import Bar, Line, Overlap
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']

shop1_sales = [8888,3323,6989,8873,3876,15409]
shop2_sales = [4888,7023,3989,5873,8876,6409]

bar = Bar("柱形图-折线图")
bar.add('bar', fruits, shop1_sales)
line = Line()
line.add('line', fruits, shop2_sales)

overlap = Overlap()
overlap.add(bar)
overlap.add(line)
overlap.show_config()
overlap.render()

4、饼图

饼图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.易于显示每组数据相对于总数的大小.而且显现方式直观.

from pyecharts import Pie
fruits = ['苹果','香蕉','凤梨','桔子','橙','桃子']
shop1_sales = [8888,3323,6989,8873,3876,15409]
pie = Pie('饼图')
pie.add('芝麻饼', fruits, shop1_sales, is_label_show=True)
pie.show_config()
pie.render()

玫瑰花样式饼图

pie2 = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie2.add("商家A", fruits, shop1_sales, center=[2550], is_random=True, radius=[2560], rosetype='radius')
pie2.add("商家B", fruits, shop2_sales, center=[7550], is_random=True, radius=[2560], rosetype='area', is_legend_show=False, is_label_show=True)
pie2.show_config()
pie2.render()

5、散点图

散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。

静态散点图

from pyecharts import  Scatter
scatter =Scatter("散点图示例")
scatter.add("A", shop1_sales, shop2_sales)
scatter.add("B", shop1_sales[::-1], shop2_sales)
scatter.show_config()
scatter.render()

动态散点图

from pyecharts import EffectScatter
v1 =[520361010100]
v2 =[556016201580]

# 动态散点图
es =EffectScatter("动态散点图")

# v1 x坐标 v2 y坐标
es.add('苹果', v1, v2)
es.show_config()
es.render()

各种图形动态散点图

from pyecharts import EffectScatter
es = EffectScatter("动态散点图各种图形")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5,  effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.show_config()
es.render()

以上是使用pyecharts实现柱状图、折线图、散点图和饼图的统计图表。

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。